
Efficient Sort-Last Rendering Using Compression-Based Image
Compositing

James Ahrens James Painter

Advanced Computing Laboratory
Los Alamos National Laboratory

Abstract

State of the art scientific simulations are currently working with data set sizes on the order of a
billion cells. Parallel rendering is a promising approach for interactively visualizing multiple isosurface
variables from data sets of this magnitude. In sort-last rendering, each processor creates a depth buffered
image of its assigned objects. All processors’ images are composited together to create a final result.
Improving the efficiency of this compositing step is key to interactive parallel rendering. This paper
presents a compression-based image compositing algorithm which can provide significant savings in
both communication and compositing costs.

1 Introduction

Parallel polygon rendering techniques are a promising approach to visualizing the massive scientific data
sets generated by parallel simulations. For example, scientists working on the United States Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI) project are currently generating data sets on the
order of a billion cells and are projected to generate order of magnitude increases in size every two years.
Interactive techniques are critical to understanding these data sets. We are creating a parallel visualization
software framework to interactively visualize massive data sets such as those produced by the Department
of Energy’s ASCI and Grand Challenge programs. The framework makes use of existing commercial and
freeware visualization and graphics software including the Visualization Toolkit, OpenGL and Mesa. A key
advantage of using this approach is the leverage gained by using the serial algorithms in these packages.
For example, the Visualization Toolkit contains imaging, visualization and graphics libraries. Within the
framework, independent processes execute serial visualization algorithms on partitioned subsets of a mas-
sive data set, communicating boundary elements when necessary. Each process uses Mesa, for software
rendering, or OpenGL, for hardware accelerated rendering. A final image compositing step is executed
which merges these images into a result image using a sort-last rendering algorithm. In sort-last rendering,
each processor creates a depth buffered image of its assigned objects. A compositing algorithm inputs two
images and iterates through pixel pairs (i.e. two pixels with corresponding locations in the input images).

1

These pixels are read and compared and the pixel closer to the viewer is output to the result image[5]. A
significant disadvantage of sort-last algorithms is the amount of image data which must be exchanged during
compositing. This paper describes a compositing scheme that communicates compressed images in order
to reduce message traffic. In addition, a compositing scheme is presented that composites these compressed
images. When compositing compressed images this algorithm can be faster than standard pixel-by-pixel
compositing method. Using a compressed image representation can improve the performance of many
sort-last compositing methods. This paper include results for binary tree compositing on a shared memory
multiprocessor.

2 Related Work

Previous work has explored the use of compression to speed up image compositing. Lacroute and Levoy
[2] explored the use of run-length encoding and compressed compositing for a serial volume renderer. This
paper promotes the use of run-length encoding and compositing as a general technique applicable to many
sort-last parallel image compositing algorithms. Ma et. al. [4] suggest tracking a bounding rectangle of
non-blank pixels for each image and only compositing pixels within the intersection of these rectangles.
Lee et. al.[3] also used this technique as part of a parallel pipelining image compositing algorithm. The
authors report a degradation in performance of 20 to 50 percent for their test data when the bounding box
optimization is not used. We expect to achieve better compression ratios from run-length compression and
compositing than bounding box optimization because the run-length algorithm can compress pixels over the
entire image instead of only outside a bounding box. Another compositing algorithm, distributed snooping
for pixel merging by Cox and Hanrahan [1], reduces message traffic by forwarding depth buffer information
from a process to all other processes and compositing this information locally. Each forwarding of the depth
buffer reduces the number of pixels in the remaining depth buffers that need to be forwarded. Values are
forwarded with an annotation of their x,y position in the image. Run-length encoding and compositing
provides a possibly superior alternative to sending x,y positions, since explicit location information does not
need to be sent with each pixel.

3 A Compression-based Image Compositing Algorithm

The key idea of this work is the representation and manipulation of images as run-length encoded objects.
Run-length encoding is a lossless compression technique. Adjacent pixels that have the same value are
represented as a single instance of the value along with a count of the number of identical pixels. In this
paper, a pixel value is represented using depth, red, green, blue and count fields.

A compression algorithm that creates this representation is now described: the algorithm stores a pixel for
comparison, initially this stored pixel is the first element. Iterating through the pixels of the image, the
algorithm compares the stored pixel to the current one. If their values are equal, the stored pixel’s count
is incremented. Otherwise the stored pixel is output into the resulting image and the stored pixel’s value is
set to the current value with a count field of 1. This algorithm runs in O(n) where n is the total number of

2

pixels in the input image.

An algorithm for compositing compressed images is now described: in the standard pixel compositing
algorithm, two images are input and a result image is output. The standard algorithm iterates thorough pixel
pairs (i.e. two pixels with corresponding locations in the input images). These pixels are read and compared
and the pixel closer to the viewer is output to the result image. When the images to be composited contain
runs, two additional cases need to be considered. The first is the case in which one image contains a run and
the other image does not. In this case, a pixel is extracted from the run, the run count is decremented and the
comparison continues as usual. In the second case, when both images contain runs, the runs of pixels can
be composited together avoiding pixel-by-pixel comparison. The length of the runs that can be composited
is equal to the smaller of the two run counts. This count is subtracted from the greater of the runs count and
the remaining run is left as part of its input image. Then the pixel runs are compared as usual and the closer
run is output.

As the output of the compositing algorithm is generated it can either be re-compressed or uncompressed. To
recompress the output, the compression algorithm is run incrementally, storing and creating runs of pixels as
they are generated. To uncompress the output image the algorithm notes if a generated output pixel contains
a run. If it does then the run is uncompressed immediately into the result image. A useful optimization
to the compressed composite algorithm is a test to decide whether to uncompress the output data. For an
image without much compression it is more efficient to use the standard compositing algorithm. Thus, the
compressed composite algorithm could generate uncompressed images and use the standard algorithm when
it is more efficient to do so. The standard and compressed compositing algorithms run in O(n) where n is
the total number of pixels in the input images.

The amount of data compression obtained from the compression and compressed compositing algorithm
is dependent on the number of the constant runs of pixels in their input images. Runs can result from
background pixels as well as constant pixel values across polygon scanlines. The compressed compositing
algorithm creates image sizes of n in the worst case and a single compressed pixel in the best case.

4 Application to Binary Tree Compositing

To test the performance of the compressed compositing algorithm two versions of a binary tree compositing
algorithm were created. The first version uses the standard compositing algorithm and the second uses
the compressed compositing algorithm. In the binary tree algorithm each process starts with an initial
depth buffered image. A tree communication pattern is created between the processes. Each parent process
receives a depth buffer image from each of their two children processes. These images are composited
and the result is sent to the process’s parent. A final result is available from the process that is the root of
the binary tree. The run-time of the binary-tree compositing algorithm is based on the number of levels in
compositing tree, which is log2 P , where P is the number of processes. For the compressed compositing
algorithm each local image is first compressed with a cost of O(n). At each level, pixel data is communicated
and composited with a cost of O(n) for both the standard and compressed compositing algorithms. In
summary, the binary tree version of the standard compositing algorithm runs in O(n logP) and the binary
tree version of the compressed compositing algorithm also runs in O(n logP). This analysis shows that the

3

difference between the run times of the standard and compressed compositing algorithms is dependent upon
constant factors. These constant factors are identified in the equations below:

For the standard compositing algorithm the cost is:

(Csendn+ Ccompositen) log2 P

� n is the total number of pixels in the input image.

� P is the total number of processes.

� Csend is the constant factor associated with sending data.

� Ccomposite is the constant factor associated with the standard compositing algorithm.

For the compressed compositing algorithm the cost is:

P�1
max
proc=0

(Ccompressn+ Cuncompressn+

(log2 P)�1X

level=0

(Csend(n�m) + Ccompressed composite(n� o)))

� Ccompress is the constant factor associated with initial image compression algorithm.

� Cuncompress is the constant factor associated with decompression of the final result. Note that the
uncompress step actually occurs within the compressed compositing algorithm but is identified sepa-
rately in this analysis for clarity.

� Ccompressed composite is the constant factor associated with the compressed compositing algorithm.

� m is the total number of compressed pixels minus the number of runs needed to represent these pixels
for node (level; b proc

2level
c). The indexing scheme for nodes in the binary tree is (level; id). Level 0 is

the leaf level and levels are incrementally assigned up to level log2 P which is the root level. On each
level, nodes are assigned ids incrementally starting at 0 and increasing to b

(P�1)

2level
c. An example of

tree indexing for P = 4 is shown in Figure 1.

� o is length of overlap in the runs minus the number of overlapping runs from node (level; b proc

2(level+1) c�

2) and node (level; b proc

2(level+1) c � 2 + 1). Note that a single run on one node can overlap with many
runs on the another node. Each overlap is counted.

A number of observations can be made based on this analysis. Notice that the run time of the standard
compositing algorithm is only dependent upon constant factors, image size and number of processors. In
addition the compressed compositing algorithm is also a data dependent algorithm providing performance
improvements based on the how well the input images can be compressed and composited along the worst

4

 (2,0)

 (1,0) (1,1)

 (0,0) (0,1) (0,2) (0,3)

Figure 1: Example of tree indexing for P = 4

case path in the binary compositing tree. In limit, when all images are fully compressible (i.e. m and o are
equal to n� 1) the run time of the compressed compositing algorithm reduces to O(n+ log p).

It is interesting to compare the cost equations. Notice that the compressed compositing algorithm pays
an extra cost of Ccompressn to initially compress the input data and Cuncompressn to uncompress the final
result over the standard algorithm. Thus for small number of processes, P , the standard algorithm may
provide better performance than the compressed algorithm. This is shown to be the case empirically in the
next section in Table 6. Also notice that the constant factors (Ccomposite and Ccompressed composite) for the
composite steps are different for the standard and compressed compositing algorithms. The constant factor
for the compressed algorithm is greater than the standard algorithm because the source code for the standard
algorithm can be better optimized by the compiler since it is a simple loop with a single conditional. The
compressed compositing algorithm contains multiple conditionals and cannot be optimized as well.

Finally, notice that if the cost of communication dominates over the computation (i.e. Csend is signifi-
cantly greater than Ccompress, Cuncompress and Ccompressed composite) and the input images are amenable
to compression then the compressed compositing algorithm is the algorithm of choice since it can reduce
communication time by sending less data.

5 A Performance Study

The binary tree compositing algorithm was executed on an SGI Origin 2000 symmetric multiprocessor
(SMP) with 64 processors, 16 Gigabytes of total memory and 8 Megabytes of secondary cache per pro-
cessor. A shared memory message passing library called ACLMPL [6] is used to pass messages between
processes. In order to test the performance of binary tree compositing algorithms, tests were run using the
parallel visualization framework described briefly in the introduction. A program to visualize a medical

5

data set in parallel was written. A volume of CT (Computed Tomography) data (93 slices which are 64x64
images) is partitioned by slices to each process. Each process reads its slices and create two isosurfaces,
one representing skin and the other bone. These isosurfaces are then rendered and the resulting images are
composited together. Figure 2 shows a standard and an exploded view of the slices to be partitioned to 8
processes for a face-on view of the data set.

Figure 2: Standard and exploded view of slices

All tests where run on an image size of 1023x1023 pixels on 32 processes unless otherwise noted. We used
an image size of 1023x1023 in order to avoid the cache conflicts that result with power of 2 array sizes on
the Origin 2000s. Two views of the CT data set where run, view 0, provides a face-on view of the data set.
Table 1 presents the execution time in seconds and speedup ratios for a set of four images with different
zoom factors. The resulting images are shown in Figure 3. Table 2 presents the total data size transferred
and compression ratios achieved.

Distance from Object - view 0 Far Closer1 Closer2 Near
Compressed Compositing 0.20 (4.5:1) 0.29 (3.1:1) 0.55 (1.7:1) 0.84 (1.1:1)

Standard Compositing 0.90 0.91 0.94 0.93

Table 1: Compositing time in seconds and speedup ratios

Distance from Object - view 0 Far Closer1 Closer2 Near
Compressed Compositing 127,225 (255:1) 720,980 (45:1) 2,859,607 (11:1) 6,096,363 (5:1)

Standard Compositing 32,442,399 32,442,399 32,442,399 32,442,399

Table 2: Total data transferred in long integers (8 bytes) and compression ratios

Notice that using run-length encoding can improve performance on an SMP by up to a factor of 4 depending
on the contents of the composited images. Also notice the significant total compression ratios. These ratios
show that using compressed compositing will have an even more significant impact in environments in which
communication costs (i.e. bandwidth limitations) dominate over computation. Examples include cross-box
communication on the Origins and workstation clusters1.

1The compression ratio of 255 to 1 is due to the implementation. The value of count is limited due to the number of bits used to

6

Figure 3: Result Images for view 0 for Far, Closer1, Closer2, Near (images arranged from left to right, top
to bottom)

7

Results for a second view, view 1, of the CT data set are given in Table 3 and Table 4. The second view
looks up thorough the head. Figure 4 shows these generated results.

Figure 4: Result Images for view 0 for Far, Closer1, Closer2, Near

Distance from Object - view 1 Far Closer1 Closer2 Near
Compressed Compositing 0.20 (4.5:1) 0.39 (2.4:1) 0.95 (1.1:1) 1.35 (0.7:1)

Standard Compositing 0.91 0.95 1.00 1.01

Table 3: Compositing time in seconds and speedup ratios

One important different between view 0 and view 1 is the viewing angle on the partitioned slices. In view 0,
processes were assigned slices that project on only a small portion of the result image, whereas in view 1 each
process displays a full cross section of the data set. Therefore the compression ratios and resulting execution
time improvements are not as dramatic as with view 0. View 0, can be thought of as a representative best
case for this data set and view 1 as a representative worst case, with the performance characteristics for other
views falling between these endpoints.

More details of the execution time of the procedures executed by the binary tree algorithm are provided in
Table 5. Notice that on an SMP the time to communicate and composite are of the same order of magnitude.
This is because message passing simply require a memory copy within an SMP and this is similar to compu-
tation done by the compositing algorithm. Because of low communication costs, the gain from compressed

represent the field (in this case, 8 bits). The compression algorithm is amended as follows: An additional test checks whether the
count is greater than the allowable size. If the limit is reached the run is written and a new run is started.

8

Distance from Object - view 1 Far Closer1 Closer2 Near
Compressed Compositing 127,255 (255:1) 1,630,332 (20:1) 5,747,078 (6:1) 10,051,629 (3:1)

Standard Compositing 32,442,399 32,442,399 32,442,399 32,442,399

Table 4: Total data transferred in long integers (8 bytes) and compression ratios

Closer2 - view 0 Compress Time Communication Time Composite Time Total Time
Compressed Compositing 0.13 0.10 0.10 0.55

Standard Compositing 0.00 0.47 0.35 0.94

Table 5: Time in seconds for procedures within compositing algorithms

compositing is smaller on an SMP architecture than it would be on a distributed memory architecture. In
spite of this, we were still able to obtain up to a factor of four improvement.

In order to test the scalability of the algorithm we ran the algorithm on 4 to 32 processors of the SGI Origin.
The results are shown in Table 6. Notice that the performance of the compressed compositing algorithm
provides a speedup when compared to the standard algorithm as the number of processes increases. This
is because as the number of processes grows so does the number of communications. The compressed
compositing algorithm reduces the cost of these communciations by compressing the data to be sent.

Closer2 - view 0 4 processes 8 processes 16 processes 32 processes
Compressed Compositing 0.41 0.50 0.55 0.55

Standard Compositing 0.38 0.56 0.75 0.92

Table 6: Total binary tree composite execution time in seconds for varying number of processes

6 Conclusions and Future Work

The paper presents a general technique to reduce the time required to communicate and composite images.
Results show up to a factor of four improvement in execution time and create compression ratios ranging
from 255:1 to 3:1 on the tested images. In the future we will use and test the compressed compositing
algorithm as part of other sort-last algorithms such as binary swap and Cox’s pixel merging algorithm. In
addition, we would like to test these algorithms on a distributed cluster of workstations. Another area for
future exploration consists of modifying an existing renderer to generate compressed results directly, thus
avoiding the creation and re-compression of a full sized image. We are also interested in using this technique
as part of a remote image delivery system for distance visualization since it can produce compressed final
images directly.

9

7 Acknowledgments

We would like to thank the other members of the ACL Visualization Team, Patrick McCormick and Allen
McPherson for their support and advice. We acknowledge the Advanced Computing Laboratory of Los
Alamos National Laboratory, Los Alamos, NM 87545. This work was performed on computing resources
located at this facility.

References

[1] M. Cox and P. Hanrahan. A distributed snooping algorithm for pixel merging. IEEE Parallel and
Distributed Technology, 1994.

[2] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization of the viewing
transformation. SIGGRAPH 94 Conference Proceedings, 1994.

[3] T. Lee, C. Raghavendra, and J. Nicholas. Image composition schemes for sort-last polygon rendering
on 2D mesh multicomputers. IEEE Transactions on Visualization and Computer Graphics, 1996.

[4] K.L. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume rendering using binary-swap composit-
ing. IEEE Computer Graphics, 1994.

[5] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of parallel rendering. IEEE
Computer Graphics, 1994.

[6] J. Painter, P. McCormick, M. Krogh, C. Hansen, and G. Verdiere. ACLMPL: Portable and efficient
message passing for MPPs. EPFL Supercomputing Review, 1995.

10

	Abstract
	1 Introduction
	2 Related Work
	3 A Compression-based Image Compositing Algorithm
	4 Application to Binary Tree Compositing
	5 A Performance Study
	6 Conclusions and Future Work
	7 Acknowledgments
	References

